Effect of the calcium buffer EGTA on the "hump" component of charge movement in skeletal muscle

نویسندگان

  • J García
  • G Pizarro
  • E Ríos
  • E Stefani
چکیده

Three manifestations of excitation-contraction (E-C) coupling were measured in cut skeletal muscle fibers of the frog, voltage clamped in a double Vaseline gap: intramembrane charge movements, myoplasmic Ca2+ transients, and changes in optical transparency. Pulsing patterns in the presence of high [EGTA] intracellularly, shown by García et al. (1989. J. Gen. Physiol. 94:973-986) to deplete Ca2+ in the sarcoplasmic reticulum, were found to change the above manifestations. With an intracellular solution containing 15 mM EGTA and 0 Ca, 10-15 pulses (100 ms) to -20 mV at a frequency of 2 min-1 reduced the "hump" component of charge movement current. This effect was reversible by 5 min of rest. The same effect was obtained in 62.5 mM EGTA and 0 Ca by pulsing at 0.2 min-1. This effect was reversible by adding calcium to the EGTA solution, for a nominal [Ca2+]i of 200 nM, and was prevented by adding calcium to the EGTA solution before pulsing. The suppression of the hump was accompanied by elimination of the optical manifestations of E-C coupling. The current suppressed was found by subtraction and had the following properties: delayed onset, a peak at a variable interval (10-20 ms) into the pulse, a negative phase (inward current) after the peak, and a variable OFF transient that could be multi-phasic and carried less charge than the ON transient. In the previous paper (Csernoch et al., 1991. J. Gen. Physiol. 97:845-884) it was shown that several interventions suppress a similar component of charge movement current, identified with the "hump" or Q gamma current (I gamma). Based on the similarity to that component, the charge movement suppressed by the depletion protocols can also be identified with I gamma. The fact that I gamma is suppressed by Ca2+ depletion and the kinetic properties of the charge suppressed is inconsistent with the existence of separate sets of voltage sensors underlying the two components of charge movement, Q beta and Q gamma. This is explicable if Q gamma is a consequence of calcium release from the sarcoplasmic reticulum.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interfering with calcium release suppresses I gamma, the "hump" component of intramembranous charge movement in skeletal muscle

Four manifestations of excitation-contraction (E-C) coupling were derived from measurements in cut skeletal muscle fibers of the frog, voltage clamped in a Vaseline-gap chamber: intramembranous charge movement currents, myoplasmic [Ca2+] transients, flux of calcium release from the sarcoplasmic reticulum (SR), and the intrinsic optical transparency change that accompanies calcium release. In at...

متن کامل

A damped oscillation in the intramembranous charge movement and calcium release flux of frog skeletal muscle fibers

Asymmetric membrane currents and calcium transients were recorded simultaneously from cut segments of frog skeletal muscle fibers voltage clamped in a double Vaseline-gap chamber in the presence of high concentration of EGTA intracellularly. An inward phase of asymmetric currents following the hump component was observed in all fibers during the depolarization pulse to selected voltages (congru...

متن کامل

The relationship between Q gamma and Ca release from the sarcoplasmic reticulum in skeletal muscle

Asymmetric membrane currents and fluxes of Ca2+ release were determined in skeletal muscle fibers voltage clamped in a Vaseline-gap chamber. The conditioning pulse protocol 1 for suppressing Ca2+ release and the "hump" component of charge movement current (I gamma), described in the first paper of this series, was applied at different test pulse voltages. The amplitude of the current suppressed...

متن کامل

Contraction threshold and the "hump" component of charge movement in frog skeletal muscle

The delayed component of intramembranous charge movement (hump, I gamma) was studied around the contraction threshold in cut skeletal muscle fibers of the frog (Rana esculenta) in a single Vaseline-gap voltage clamp. Charges (Q) were computed as 50-ms integrals of the ON (QON) and OFF (QOFF) of the asymmetric currents after subtracting a baseline. The hump appeared in parallel with an excess of...

متن کامل

A slow component of intramembranous charge movement during sarcoplasmic reticulum calcium release in frog cut muscle fibers

Cut muscle fibers from Rana temporaria were mounted in a double Vaseline-gap chamber and equilibrated with an end-pool solution that contained 20 mM EGTA and 1.76 mM Ca (sarcomere length, 3.3-3.8 microns; temperature, 14-16 degrees C). Sarcoplasmic reticulum (SR) Ca release, delta[CaT], was estimated from changes in myoplasmic pH (Pape, P.C., D.-S. Jong, and W.K. Chandler. 1995. J. Gen. Physiol...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of General Physiology

دوره 97  شماره 

صفحات  -

تاریخ انتشار 1991